Performance research and multi-objective optimization of concentrating photovoltaic/thermal coupled air source heat pump heating system
Na Wang,
Shangling Chu,
Chao Cheng,
Heng Zhang,
Haiping Chen and
Dan Gao
Energy, 2024, vol. 296, issue C
Abstract:
In this paper, TRNSYS is used to simulate the heating systems of air-cooling concentrating photovoltaic/thermal (CPVT) coupled air source heat pump and water-cooling CPVT coupled air source heat pump. Besides, Grasshopper is adopted for multi-objective optimization of air-cooling system. This study not only proposed two hybrid systems and enriched the research of CPVT coupled air source heat pump, but also proposed a multi-objective optimization method, which uses Grasshopper to invoke TRNSYS. Compared with the air source heat pump system, the annual average COP of heat pump in the air-cooling system increases by 22.8%, and that of the water-cooling system decreases by 6%. The primary energy saving rate of the air-cooling system is 1.06 times and 6.67 times that of the water-cooling system and the air source heat pump system. The optimized air-cooling system reduces the annual total cost by 2.83%, and increases the energy utilization coefficient by 4.76%. The proposed air-cooling system has obvious advantages in energy saving and improving COP of heat pump. This study is useful for the cost savings and energy conservation of air-cooling concentrating photovoltaic/thermal (CPVT) coupled air source heat pump systems based on urban public buildings.
Keywords: Concentrating photovoltaic/thermal; Multi-objective optimization; Energy utilization coefficient; Exergy efficiency; Economy (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224007801
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:296:y:2024:i:c:s0360544224007801
DOI: 10.1016/j.energy.2024.131008
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().