A PEM-based augmented IBDR framework and its evaluation in contemporary distribution systems
Gaurav Kansal and
Rajive Tiwari
Energy, 2024, vol. 296, issue C
Abstract:
Demand response (DR) is an attractive concept that invites customers’ active participation in the distribution sector by means of price elasticity of demand (PED). It not only enhances customers’ demand sensitivity but also improves technicalities and economics related to both the utility and demand sides. This paper emphasizes the combined effect of price-based DR (PBDR) and incentive-based DR (IBDR) with the inclusion of PED. The elasticity phenomenon, when applied with incentives as in IBDR, changes the demand-consumption pattern as compared to individual DR. Moreover, the demand variation due to only incentives leads to incentive elasticity, which needs to be studied carefully; then only the impact of individual DR and augmented DR (PBDR and IBDR combined) can be understood analytically. In this work, IBDR models are tested on considered pricing schemes along with a new proposed pricing scheme to evaluate the systems’ technical and economical parameters. A standard IEEE 33 bus distribution system has been chosen for the assessment of suggested models and to compare them to the existing ones. Furthermore, these models are descriptively evaluated from both the utility and consumer perspectives.
Keywords: Demand response; Augmented DR; Price elasticity of demand; Incentive demand (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224008740
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:296:y:2024:i:c:s0360544224008740
DOI: 10.1016/j.energy.2024.131102
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().