Li-ion battery capacity prediction using improved temporal fusion transformer model
William Gomez,
Fu-Kwun Wang and
Jia-Hong Chou
Energy, 2024, vol. 296, issue C
Abstract:
Lithium-ion (Li-ion) batteries have near-zero energy emissions and provide power to various devices, such as automobiles and portable equipment. The strategy predicts the capacity of Li-ion in advance and can also help arrange maintenance tasks. To improve state of health (SOH) and remaining useful life (RUL) prediction accuracy, we propose an improved temporal fusion transformer (ITFT) method based on bidirectional long short-term memory (Bi-LSTM) encoder-decoder layer replacing the long short-term memory for probabilistic online RUL prediction. A novel interpretable hyperparameter tuning method called Bayesian optimization based on tree-structure Parzen estimator (TPE) is coupled with a unique ITFT model to improve RUL prediction accuracy. Furthermore, we consider the effects of keen-onset to establish the starting point of our training. The root mean square error for four batteries using the proposed model for the test data are 0.0018, 0.0019, 0.0013, and 0.0025, respectively, which outperforms the other models, with an improvement accuracy rate above 25%. The proposed model SOH results indicate that our proposed approach outperforms some previously published methods. Our online RUL prediction demonstrates relative errors of 1.18%, 1.54%, 1.06%, 2.70%, 0.67%, 2%, 3.90%, 0%, and 3.08% for nine batteries, respectively. These results for SOH and RUL predictions emphasize the excellent performance of our proposed method.
Keywords: Remaining useful life prediction; Improved temporal fusion transformer; Bidirectional long short-term memory; Tree-structure parzen estimator (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224008867
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:296:y:2024:i:c:s0360544224008867
DOI: 10.1016/j.energy.2024.131114
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().