A novel stochastic multistage dispatching model of hybrid battery-electric vehicle-supercapacitor storage system to minimize three-phase unbalance
Siyu Zhou,
Yang Han,
Amr S. Zalhaf,
Matti Lehtonen,
Mohamed M.F. Darwish and
Karar Mahmoud
Energy, 2024, vol. 296, issue C
Abstract:
The unbalanced load distribution, the single-phase connection of renewable energy, and the uncoordinated charging of electric vehicles (EVs) will bring a severe issue corresponding to the three-phase unbalance in modern distribution networks. To deal with this issue, a novel multistage optimal dispatching model with the hybrid energy storage system (HESS), consisting of the battery energy storage system (BESS), EV, and supercapacitor (SC), is proposed in this paper. The first stage is conducted on the day-ahead stage, driven by minimizing the total operation cost and relieving power unbalance, the unbalanced penalty cost is introduced into the optimal dispatching model with the electricity purchasing cost and the degradation cost of HESS. Also, the chance-constraint stochastic programming (SP) model with the coordinated operation of HESS is accommodated to handle the diverse uncertainties of renewable energy, load demand, and EV users’ behaviors. In the intra-day operation stage, a rolling optimization-based dispatch model is formulated to re-optimize the operation of the SC for the rapid response of mitigating the real-time three-phase unbalance caused by renewable energy. The numerical experiments are executed on the IEEE 34-bus three-phase test system. Compared with the cases without considering SC and the degradation cost of HESS, the power unbalance in the proposed model is reduced by 3.27% and 3.62% per day at the real-time stage, respectively, while total operation cost is reduced by 46.77 US$ and 350.62 US$ per day, respectively. The results validated that the proposed model is efficient in reducing the three-phase unbalance under multi-time scales, improving the economic operation of the distribution network.
Keywords: Three-phase unbalance; Hybrid energy storage system; Chance-constraint; Diverse uncertainties; Rolling optimization; Multi-time scales (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224009472
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:296:y:2024:i:c:s0360544224009472
DOI: 10.1016/j.energy.2024.131174
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().