Study on the decompression behavior during large-scale pipeline puncture releases of CO2 with various N2 compositions: Experiments and mechanism analysis
Shuai Yu,
Xingqing Yan,
Yifan He,
Lei Chen,
Yanwei Hu,
Kai Yang,
Zhangao Cao,
Jianliang Yu and
Shaoyun Chen
Energy, 2024, vol. 296, issue C
Abstract:
Impurities in the captured CO2 stream from various industrial sources may introduce uncertainty into the transient releases of transportation pipelines. Due to limitations in the experimental scale, there is currently limited analysis of the vertical cross-sectional temperature distribution and the pressure response along the pipeline during the releases of impure CO2. The mechanism by which impurities affect the decompression wave and the alterations in phase-change pathways remains unclear. In this study, building upon the existing large-scale pipeline, we established an impurity injection system. Using the common impurity, N2, as a variable, the decompression behavior of the CO2+N2 mixture in the puncture releases and the influence mechanism of N2 were investigated. The results show that the effect of N2 on sound velocity causes a significant decrease in the decompression wave speed. N2 raises the minimum temperature, and it is more pronounced in large-diameter releases; for instance, the minimum temperature during the 100 mm release is always higher than that in the 50 mm release. The gas-liquid mixture closely follows the dew point line, conforming to the Gibbs equilibrium criterion. The experimental scale mirrors real-world operating conditions, endowing the research findings with practical applicability. Concurrently, it furnishes dependable data for numerical researches.
Keywords: CCUS; Impure CO2; Release; Pressure; Phase transition; Thermodynamics (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224009538
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:296:y:2024:i:c:s0360544224009538
DOI: 10.1016/j.energy.2024.131180
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().