Enhanced downstream processing of NGL using intensified fluid separation technologies
Danforth Brandon Bosman,
Qing Li and
Anton A. Kiss
Energy, 2024, vol. 296, issue C
Abstract:
Downstream processing of natural gas liquids (NGL) provides feedstock needed for plastic production, upgraded fuels and heating, but it is one of the largest high-pressure and energy intensive processes. This original study is the first to integrate novel process intensification options from a holistic viewpoint for the full process covering all sections: 1) NGL recovery, 2) NGL fractionation, and 3) isomerization. Intensified fluid separation technologies (e.g. complex columns, thermal coupling, and heat pumps) are explored and integrated into a full NGL process to improve the energy efficiency and mitigate GHG emissions, and to establish the limits of operation, utility usage, and specific product costs. All NGL processes are rigorously simulated in Aspen Plus, and evaluated based on a fair economic and sustainability analysis.
Keywords: Fluid separation; Process intensification; Dividing-wall column; Heat pumps; Sustainability (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224009599
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:296:y:2024:i:c:s0360544224009599
DOI: 10.1016/j.energy.2024.131186
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().