EconPapers    
Economics at your fingertips  
 

Deep learning enhanced fluid-structure interaction analysis for composite tidal turbine blades

Jian Xu, Longyan Wang, Zhaohui Luo, Zilu Wang, Bowen Zhang, Jianping Yuan and Andy C.C. Tan

Energy, 2024, vol. 296, issue C

Abstract: A precise and cost-effective prediction tool for fluid-structure interaction (FSI) analysis is crucial for optimizing the structural design of tidal turbine blades. However, the high computational costs associated with fluid dynamic analysis pose a significant challenge, as the current lack of efficient FSI prediction methods hinders the advancement of cutting-edge tidal turbine designs. To address this issue, this paper proposes a novel consolidated framework that integrates deep learning convolutional neural networks (CNN) with blade element momentum (BEM) theory and finite element method (FEM) to perform deformation analysis of turbine blade structures. The proposed CNN-BEM-FEM integrated framework efficiently identifies the geometric features and predicts the hydrodynamic parameters of turbine blades and thus, achieving accurate assessments of the structural behavior of tidal turbines. The study applies two-step verification procedures to validate the prediction accuracy of the CNN-BEM-FEM framework and the result demonstrates excellent agreement with experimental tests for hydrodynamic performance and blade deformation. When compared with the static one-way FSI calculated by Ansys Workbench software, the computational efficiency of CNN-BEM-FEM framework increases by more than 18 times, with discrepancies in blade deformation and equivalent stress calculations generally less than 5 %. By applying the proposed method to predict the FSI performance of tidal turbine blades with various shear web structures, the practical applicability for composite turbine blade design is successfully demonstrated. The results underscore the potential of the CNN-BEM-FEM framework as an efficient and accurate prediction tool for optimizing the structural design of tidal turbine blades.

Keywords: Horizontal axis tidal turbines (HATT); Convolutional neural networks (CNN); Blade element momentum (BEM); Finite element method (FEM); Fluid-structure interaction (FSI); Deep learning (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224009897
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:296:y:2024:i:c:s0360544224009897

DOI: 10.1016/j.energy.2024.131216

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:296:y:2024:i:c:s0360544224009897