Highly selective production of light aromatics from co-catalytic fast pyrolysis of pre-deoxygenated biomass and hydrogen-rich polyethylene using a dual-catalyst system
Liang Zhu,
Wei Cai,
Jie Li,
Dengyu Chen and
Zhongqing Ma
Energy, 2024, vol. 296, issue C
Abstract:
Co-catalytic fast pyrolysis of torrefaction deoxygenated pine wood (PW) and high-density polyethylene (HDPE) in dual-catalyst (metal oxidize and zeolite) system is an effective technology to produce renewable bio-aromatics. In this work, the torrefaction deoxygenation pretreatment (TDP) was carried out to remove oxygen element from PW prior to catalytic fast pyrolysis (CFP). 56.90 % oxygen could be removed at TDP temperature of 300 °C, releasing in the oxygen carrier of CO2, CO, H2O, alcohols, acids, phenols, etc. Then, the synergistic effect between the metal oxide and the HZSM-5 in dual-catalyst system was also investigated. Among these metal oxides (Al2O3, MgO, CaO, ZnO, and Fe2O3) and hierarchical HZSM-5, the dual-catalyst of CaO and hierarchical HZSM-5 (treated by 0.2 M NaOH) was the optimal combination. The layout mode between feedstock and dual catalyst was also optimized. The highest yield of aromatics was produced in layout Mode 8, where the CaO was mixed with torrefied PW, but the hierarchical HZSM-5 and HDPE were laid in separated layers. The mixing of CaO and torrefied PW promoted the conversion of the macromolecular oxygenates into micromolecular oxygenates. Then, these small-molecular oxygenates could enter the hierarchical channel of HZSM-5, being converted into aromatics by undergoing the Diels-Alder reaction.
Keywords: Biomass; High-density polyethylene; Torrefaction deoxygenation pretreatment; Light aromatics; Dual catalyst system; Catalytic fast pyrolysis (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224010144
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:296:y:2024:i:c:s0360544224010144
DOI: 10.1016/j.energy.2024.131241
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().