EconPapers    
Economics at your fingertips  
 

Typical solar extinction year at Plataforma Solar de Almería (Spain). Application to thermoelectric solar tower plants

Noelia Simal, Jesús Ballestrín, Elena Carra, Aitor Marzo, Jesús Polo, Javier Barbero, Joaquín Alonso-Montesinos and Gabriel López

Energy, 2024, vol. 296, issue C

Abstract: The atmospheric extinction of solar radiation reflected by heliostats are recognized as an important factor of radiative losses in Concentrating Solar Power technologies in general and especially in thermoelectric solar tower plants. These types of plants are getting larger (≥100 MWe), and consequently the distances between the heliostats and the receiver very often exceed 1 km and radiative losses due to solar extinction on this path can represent a high percentage. The aerosols and water vapor along this route scatter and absorb solar radiation, preventing a percentage of it from reaching the solar receiver. For this reason, in the process of choosing a location for the design and construction of these plants, the radiative losses due to extinction in that place should be known in advance. Until now, Typical Meteorological Years have been available for the location chosen in the plant design stage, mainly considering Direct Normal Irradiance but not solar extinction. Unfortunately, ground-based measurement of solar extinction has never been properly considered because it was not known how to measure or estimate it adequately. The Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT, Spain) has developed a reliable solar extinction measurement system which has been recording accurate horizontal extinction values at Plataforma Solar de Almería (PSA) since 2017. Based on this unique in the world solar extinction database of more than five years, a Typical Solar Extinction Year has been obtained for the first time to rigorously validate extinction models that then allow knowing the extinction in any area of interest in the world for solar tower power plants and to choose the most convenient one. It has been found that the annual average extinction at PSA for the measurement distance (742 m) is 6 %, with a standard deviation of 2 % and a median of 6 %. This average annual extinction value corresponds to a horizontal extinction coefficient of (0.083 ± 0.029) km−1 and a Visual Range of 47 km (-12 km, +23 km). Frequent haze events have been observed at PSA mainly caused by Saharan dust, which can be considered one more symptom of the current increased desertification and climate change.

Keywords: Solar extinction; CSP; Solar tower plants; Typical solar extinction year (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224010156
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:296:y:2024:i:c:s0360544224010156

DOI: 10.1016/j.energy.2024.131242

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:296:y:2024:i:c:s0360544224010156