EconPapers    
Economics at your fingertips  
 

Effect of heating rate on the secondary reaction in low-rank coals pyrolysis with the real-time evolution analysis of in-situ tar

Yao Zhu, Qinhui Wang, Jiqing Yan, Jianmeng Cen and Mengxiang Fang

Energy, 2024, vol. 297, issue C

Abstract: Performing online evolution analysis of tar in actual pyrolysis process is a major challenge. In this work, the effects of heating rate (HR) on evolution curves of in-situ tar for low-rank coals pyrolysis were investigated in a novel laboratory bench. The escape law of volatiles was obtained, the influence of HR on secondary reactions was analyzed, the association between products and molecular structures was constructed, and pyrolysis mechanism was deduced. Aliphatic hydrocarbons (except dienes), phenols, and oxygenated compounds have only one peak, while dienes and aromatics have multiple peaks throughout the pyrolysis process. The first peak is attributed to coal primary pyrolysis. At increased HRs, the second peak for 1∼2ring aromatics is from the cracking of primary volatiles, and that for 3∼4ring aromatics from coal continued cracking. The proportion of phenols and oxygenated compounds decreases, aromatics increases, and aliphatic hydrocarbons varies for different coals. Generally, HR increases the yield of primary volatiles by enhancing coal primary pyrolysis, elevates the proportion of light aromatics by promoting secondary cracking and aromatization of primary volatiles, reduces char yield by inhibiting condensation reactions throughout the pyrolysis process. The similar macromolecular structures of different coals make the evolution curve versus HRs follow a common law.

Keywords: Heating rate; Online evolution law of volatiles; Low-rank coal; Pyrolysis mechanism; Secondary reaction (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224009563
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:297:y:2024:i:c:s0360544224009563

DOI: 10.1016/j.energy.2024.131183

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224009563