EconPapers    
Economics at your fingertips  
 

Development and application of a guideline for assessing optimization potentials for district heating systems

Anna Vannahme, Mathias Ehrenwirth and Tobias Schrag

Energy, 2024, vol. 297, issue C

Abstract: Integrating renewable energies into district heating systems has a large potential to reduce CO2-emissions in the heating sector. As district heating systems offer the possibility of incorporating renewable energies into the heat supply, new systems have to be built and the existing networks must be maintained. This study investigates ways to optimize existing district heating systems in order to ensure economic sustainability in the long-term. Previous case studies have elaborated on a variety of optimization measures. However, to date, these measures have neither been collected nor consistently assessed for a wider application range. Therefore, in the study presented here a system for assessing the ecological and economic benefits of optimization measures was developed and applied. The assessment method utilized showed that optimization of district heating consumer substations and adding of a central buffer storage tank has a high optimization potential in comparison to intermittent operation strategy, which has a significantly lower optimization potential. From this information and the transferability data, a district heating operator can determine which optimization measure should be prioritized, which is shown at the end of the paper on an example case.

Keywords: Assessing method; District heating system; Optimization measure; Upgrading; Low-investment measures; Economic profitability; Ecological benefits (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422400999X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:297:y:2024:i:c:s036054422400999x

DOI: 10.1016/j.energy.2024.131226

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:297:y:2024:i:c:s036054422400999x