EconPapers    
Economics at your fingertips  
 

Research on day-ahead optimal dispatching of virtual power plants considering the coordinated operation of diverse flexible loads and new energy

Zeyuan Dong, Zhao Zhang, Minghui Huang, Shaorong Yang, Jun Zhu, Meng Zhang and Dongjiu Chen

Energy, 2024, vol. 297, issue C

Abstract: Large-scale new energy access to the power grid poses significant challenges to its stable operation. Differentiated user-side power consumption patterns further widen peak-valley differences in power demand. This paper focuses on operation scheduling problems of virtual power plants with coordinated optimization of diverse flexible loads and new energy, through efficient aggregation and optimization control of new energy and demand-side resources, improving power supply and demand mismatch. Firstly, Long Short-Term Memory and Latin Hypercube Sampling were employed for predicting the day-ahead output of wind and photovoltaic power. Secondly, wind and photovoltaic power, batteries and a pumped storage plant were aggregated into a virtual power plant, and the day-ahead optimization scheduling model was constructed considering system operation costs, energy curtailment costs and demand response costs. Finally, a simulation analysis was conducted. The results show that when large-scale new energy accesses to the power grid, traditional “Generation varies with Load” regulation modes will cause massive energy waste, while the “Generation-Load Interaction” regulation mode can achieve the linkage optimization between the generation side and the demand side, enhancing the system acceptance of new energy. Demand response can optimize users’ power consumption behaviors, reducing the charging costs by 52.13 % and heating costs by 0.84 %.

Keywords: Virtual power plant; Flexible loads; Demand response; Generation-Load InteracItion (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224010089
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:297:y:2024:i:c:s0360544224010089

DOI: 10.1016/j.energy.2024.131235

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224010089