EconPapers    
Economics at your fingertips  
 

A study of the interaction between volatile and char on the mechanism of NO and N2O conversion during nitrogen-containing biomass model (amino acids) combustion

Rui Ma, Hai Zhang and Weidong Fan

Energy, 2024, vol. 297, issue C

Abstract: The interaction between volatile and char is widespread in combustion. The effect of this interaction on the conversion of fuel-N to NOx is significant, but the mechanism remains to be comprehensively unveiled. Thus, in this paper, the NO and N2O conversion of nitrogen-containing biomass models (glutamate, glycine, phenylalanine) during combustion at high temperatures (800–1500 °C) is investigated using two combustion modes, separated combustion (in which volatile and char are burned separately) and coupled combustion (in which volatile and char are burned simultaneously), in an O2/Ar atmosphere. A new pathway for N2O formation resulting from the interaction between volatile and char is identified. At low temperatures, this interaction facilitates the conversion of fuel-N to N2O. For instance, during the separated combustion of glutamate at 800 °C, the conversion rates of fuel-N to N2O and NO are 26.3 % and 20.4 %, respectively. However, in coupled combustion, these conversion rates shift to 48.1 % for N2O and 3.6 % for NO. At high temperatures, this interaction promotes the conversion of fuel-N to NO. For instance, during the separated combustion and coupled combustion of glutamate at 1500 °C, the conversion rates of fuel-N to NO are 6.2 % and 16.6 %, respectively. Similar patterns are observed for the other two amino acids. In both combustion modes, the co-firing of cellulose, lignin, and hemicellulose with glutamic acid significantly suppresses the production of N2O. The conversion rate of N2O decreases by about 7 %–10 %, while the impact on NO release shows either a suppressive or promotive effect in different temperature intervals. These results play a crucial role in the development of efficient and clean combustion technology for biomass.

Keywords: Biomass; NO; N2O; Interaction; Separated combustion; Coupled combustion (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224010181
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:297:y:2024:i:c:s0360544224010181

DOI: 10.1016/j.energy.2024.131245

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224010181