Conceptual design and multi-objective optimization of a hybrid system based on direct ammonia protonic ceramic fuel cell and alkali metal thermal electric converter
Yuan Han,
Wenzhi Gao and
Yanzhou Qin
Energy, 2024, vol. 297, issue C
Abstract:
As a power generation device, direct ammonia protonic ceramic fuel cells (NH3–PCFCs) also produce a significant amount waste heat, which not only results in energy wastage but also abnormal operation if the waste heat is not removed. To address these concerns and enhance generation electricity capacity, a novel waste heat recovery system based upon NH3-PCFC and alkali metal thermal electric converter (AMTEC) is first proposed, wherein the AMTEC converts the high-grade exhaust heat produced by the NH3-PCFC to extra electricity. Considering ammonia decomposition sluggish kinetics, various irreversible overpotential losses of NH3-PCFC as well as thermodynamic losses within the integrated system, the energetic/exergetic performance parameters evaluating the NH3-PCFC, AMTEC and the hybrid system are formulated. The general performance characteristics of the proposed system are revealed, along with a sensitive analysis conducted under specific operational conditions or structural parameters. Numerical calculation exhibited that the maximum attainable power density of the hybrid system has been promoted 20.5 % than that of stand-alone NH3-PCFC system. The multi-objective genetic algorithm is utilized to optimize the hybrid system performance for trade-off the power output and efficiency. Optimized results show the power density and corresponding efficiency of proposed system can respectively reach 6762.3 W m−2 and 49.8 % in the corresponding optimization conditions.
Keywords: Direct ammonia protonic ceramic fuel cell; Alkali metal thermal electric converter; Waste heat recovery; Sensitive analysis; Multi-objective optimization (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224010600
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:297:y:2024:i:c:s0360544224010600
DOI: 10.1016/j.energy.2024.131287
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().