Research on compression process and compressors in supercritical carbon dioxide power cycle systems: A review
Yunxia Liu,
Yuanyang Zhao,
Qichao Yang,
Guangbin Liu and
Liansheng Li
Energy, 2024, vol. 297, issue C
Abstract:
The utilization of supercritical carbon dioxide (sCO2) in the Brayton cycle presents several advantages, such as compact equipment, high efficiency, and rapid response time. The sCO2 power cycle can be applied in coal-fired power, solar thermal power, and nuclear power systems. Over the past 10 years, many scholars have researched sCO2 power systems. The compression (pressurization) process is a core thermodynamic process in sCO2 power cycles, achieved through the use of compressors. Therefore, compressors are important components in sCO2 power systems. This paper provides a summary of recent studies on compression processes and compressors for sCO2 power systems. The impact of near-critical-point characteristics of the compression process on equipment and sCO2 power cycle systems is discussed. The investigations of the performance parameters, design considerations, design methods, and performance prediction methods of sCO2 compressors are reviewed. The typical research results on CO2 condensation at the compressor inlet, the effects of operating conditions on compressor performance, as well as optimization of design parameters, are also summarized. Additionally, it provides a summary of sCO2 compressor prototypes developed by research institutes worldwide and experimental studies. Finally, the current issues with sCO2 compressors are addressed, and the main future research directions are proposed. This paper will contribute to the development of compressors and promote the acceleration of the commercialization of sCO2 power systems.
Keywords: Supercritical CO2 power cycle; Compression process; Compressor; CFD simulation; Condensation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224010612
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:297:y:2024:i:c:s0360544224010612
DOI: 10.1016/j.energy.2024.131288
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().