EconPapers    
Economics at your fingertips  
 

Hybrid forecasting model of building cooling load based on combined neural network

Zhikun Gao, Siyuan Yang, Junqi Yu and Anjun Zhao

Energy, 2024, vol. 297, issue C

Abstract: The inefficient operation of air-conditioning system, which leads to its high-energy consumption, has aroused far-ranging concern at present. And an accurate prediction of building cooling load can be conducive to matching the supply and demand of the air-conditioning system, thus improving its operational efficiency. Therefore, a hybrid forecasting model (BAS-GRNN&LSTM) combing generalized regression neural network (BAS-GRNN) and long short-term memory neural network (BAS-LSTM) optimized by beetle antennae search algorithm is proposed for building cooling load prediction. First, the factors affecting the cooling load are comprehensively analyzed, and the random forest combined with recursive feature elimination (RF-RFE) method is used for feature selection. Then, the BAS-GRNN&LSTM model is developed to forecast. Finally, a simulation experiment is carried out using the measured data of a large building in north of China. Compared with GRNN, LSTM, BAS-GRNN and BAS-LSTM, BAS-GRNN&LSTM performs better in five performance evaluation metrics, RMSE, MAPE, RRE, MBE and R2, demonstrating its higher prediction accuracy. Furthermore, the detailed algorithm performance analysis shows that the proposed hybrid model has significant advantages in robustness, generalization capability and computational complexity, and can be well applied to building cooling load prediction and beneficial to the optimal control of building air-conditioning system.

Keywords: Building cooling load; Hybrid forecasting model; Artificial neural network; Feature selection; Prediction accuracy (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224010909
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:297:y:2024:i:c:s0360544224010909

DOI: 10.1016/j.energy.2024.131317

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:297:y:2024:i:c:s0360544224010909