A novel full-process test bench for deep-sea in-situ power generation systems
Dayu Zhang,
Kaixin Chai,
Penghua Guo,
Qiao Hu,
Jingyin Li and
Ayesha Shams
Energy, 2024, vol. 297, issue C
Abstract:
A novel full-process test bench was developed to replace lengthy and costly deep-water experiments. This platform can accurately simulate the dynamic characteristics of hydrokinetic turbines and can be used to evaluate their power-supply capabilities under various conditions. The hydrokinetic turbine power model was established by obtaining discrete performance data through experimentally validated computational fluid dynamics simulations and building surrogate models using the response surface methodology. This approach offers higher accuracy and broader applicability than empirical models. Moreover, a stepper motor platform based on a speed control scheme is proposed for the first time that can achieve high-precision transient simulation with a simplified control mechanism. This platform was employed to assess the power supply capacity of two hydrokinetic turbines under constant and typical deep-sea flow speeds. The ductless Archimedes screw hydrokinetic turbine was found to be more suitable for the deep water application than the high-solidity horizontal axis turbine due to its high self-start capacity and power coefficient. Furthermore, a case study was conducted on the design of a deep-sea in-situ power generation system at Luzon Undercurrent. Results suggest that a ductless Archimedes screw hydrokinetic turbine with a 1000 mm radius can comfortably cater to the energy demands of miniature AUVs.
Keywords: Test bench; Hydrokinetic turbine model; In-situ power generation; Deep sea; Hydrokinetic energy conversion systems (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224011149
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:297:y:2024:i:c:s0360544224011149
DOI: 10.1016/j.energy.2024.131341
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().