EconPapers    
Economics at your fingertips  
 

Forecasting carbon price with attention mechanism and bidirectional long short-term memory network

Chaoyong Qin, Dongling Qin, Qiuxian Jiang and Bangzhu Zhu

Energy, 2024, vol. 299, issue C

Abstract: To improve the precision of carbon price forecasting, our study aims to propose a novel hybrid forecasting model which integrates recurrent neural networks and attention mechanisms. First, the improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) algorithm is employed to decompose carbon prices into several regular intrinsic mode functions (IMFs) and a residual. Second, multiscale entropy is utilized to differentiate and reconstruct these components to reduce cumulative errors in subsequent forecasting. Subsequently, a bidirectional long short-term memory network (Bi-LSTM) equipped with attention mechanisms is used to forecast each reconstructed component. Attention mechanisms identifies crucial sequence elements, assigns different weights to hidden information, and extracts richer information from the series. Finally, the results of all components are integrated to obtain the final forecasting result. Empirical analysis conducted on real datasets from the Guangdong and Hubei carbon markets demonstrates that the proposed hybrid model outperform prevailing mainstream forecasting models in terms of both horizontal and directional forecasting metrics.

Keywords: Carbon price forecasting; ICEEMDAN; Attention mechanisms; Bidirectional long short-term memory network (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224011836
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:299:y:2024:i:c:s0360544224011836

DOI: 10.1016/j.energy.2024.131410

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:299:y:2024:i:c:s0360544224011836