Optically functional bio-based phase change material nanocapsules for highly efficient conversion of sunlight to heat and thermal storage
Oguzhan Kazaz,
Nader Karimi and
Manosh C. Paul
Energy, 2024, vol. 305, issue C
Abstract:
Conversion of sunlight to heat and the subsequent thermal storage by nanoencapsulated bio-based phase change material slurries (NBPCMSs) in a low temperature solar system is investigated. The influences of capsule size, shell material, tilt angle, solar heat flux, PCM mass concentration, nanoparticle and its concentration are explored. The results reveal that the useful heat gain capacity of nano-enhanced coconut oil/Ag, coconut oil/Au, coconut oil/Al, and coconut oil/Cu based slurries is respectively 3.02, 3.12, 2.7, and 3.14 times better than that of pure water, due to an enhanced interaction of light with the functional bio-based PCM nanocapsules. Consequently, the thermal energy storage is reported to be 8.85, 9.29, 7.41, and 9.19 times higher. The increment in mass concentration of PCM from 5 to 20 % and addition of blended nanoparticles further augment the solar thermal energy storage capacity. Specifically, the storage capacity of coconut oil/Au based slurry is improved by up to 74.4 % when the 20 % coconout oil is used as a core material. The energy storage improvements of Cu and Ag based slurries enhance by 4.04 and 4.87 %, respectively, with the insertion of Au nanoparticles at a volume fraction of 25 ppm. Augmenting the core/shell confinement size, on the other hand, diminishes the surface area to volume ratio, allowing agglomeration of the structures inside the slurry. The performance of solar energy storage decreases as the inclination angle of the storage cavity increases from 0° to 60°, reducing the buoyancy force and particles’ collision. Further, since Al particles have low optical characteristics and thermal conductivity, the thermal performance of coconut oil/Al nanoencapsulated slurry are at the lowest level. Finally, experiment is conducted to validate the specific heat capacity model prediction under various wind speeds, from 1 to 4 m/s, and solar illuminations, from 400 to 1000 W/m2.
Keywords: Photothermal conversion and storage; Optically functional nanostructures; Bio-based phase change materials; Nanoencapsulation; Light-matter interaction (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224020644
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:305:y:2024:i:c:s0360544224020644
DOI: 10.1016/j.energy.2024.132290
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().