EconPapers    
Economics at your fingertips  
 

Booster heat pump with drop-in zeotropic mixtures applied in ultra-low temperature district heating system

Tingting Zhu, Elias Vieren, Jierong Liang, Jan Eric Thorsen, Michel De Paepe, Steven Lecompte and Brian Elmegaard

Energy, 2024, vol. 305, issue C

Abstract: The pursuit of sustainable district heating solutions has driven a growing interest in ultra-low temperature district heating (ULTDH) systems, where booster heat pumps (BHPs) play a pivotal role despite challenges posed by their efficiency limitations under large temperature glide conditions. This paper investigates the potential of drop-in R-1234yf/R-32 zeotropic mixtures in BHPs compared to a baseline R-134a system, within the context of a ULTDH framework. This study focused on the viability of the mixtures of R-1234yf/R-32 with the composition ratio of 80 %/20 % and 90 %/10 %. The investigation reveals disparities in compressor efficiency and heat exchanger pressure drop at the component level. Device-level analysis unveils increased COP for R-1234yf/R-32 mixtures, alongside with maximum second-law efficiencies reaching 0.32. A remarkable enhancement in heating capacity up to 58 % was found. System-level analysis demonstrated exergetic efficiencies and identified preferable district heating temperatures. Exergetic efficiencies of 0.47, 0.55, and 0.59 were achieved for domestic hot water preparation at district heating supply temperatures of 30 °C, 35 °C, and 40 °C, with a subsequent shift in optimal district heating temperatures as central heating station efficiency decreased. Temperature profile analysis underscored challenges stemming from excessive subcooling, highlighting the need for configuration refinements.

Keywords: Booster heat pump; District heating; Zeotropic mixture; Domestic hot water; Exergetic efficiency (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224020668
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:305:y:2024:i:c:s0360544224020668

DOI: 10.1016/j.energy.2024.132292

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:305:y:2024:i:c:s0360544224020668