An event-triggered and dimension learning scheme WOA for PEMFC modeling and parameter identification
Zhe Sun,
Yiwen Wang,
Xiangpeng Xie,
Qiming Yang,
Yunrui Bi and
Zhixin Sun
Energy, 2024, vol. 305, issue C
Abstract:
Aiming at the high dimension and complexity of parameters identification problem, a whale optimization algorithm based on event-triggered and dimension learning scheme (EDWOA) is presented, which is specifically designed for the proton exchange membrane fuel cell (PEMFC) model. Drawing inspiration from group optimization strategies, a novel dimensional learning method is introduced to enhance the dynamic search capabilities of the algorithm. To assess the efficacy of the proposed algorithm, benchmark function testing was conducted, and its fitness surpassed common heuristic algorithms on over 15 objective functions. The results clearly indicate that the EDWOA algorithm outperforms its counterparts in terms of global search performance. Its ability to navigate complex search spaces sets it apart from other algorithms. Finally, the proposed EDWOA algorithm is successfully applied to parameter identification in the PEMFC model. Through a comparative analysis with existing research findings, it was found that the identified PEMFC model exhibited a notable enhancement in fitness, ranging from 0.02 to 0.93. This underscores the effectiveness of the EDWOA algorithm in improving the performance and dynamic output of PEMFC models.
Keywords: Proton exchange membrane fuel cell; Parameter identification; Improved whale optimization algorithm (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224021261
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:305:y:2024:i:c:s0360544224021261
DOI: 10.1016/j.energy.2024.132352
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().