EconPapers    
Economics at your fingertips  
 

Computational study of transverse oblique injectors for improvement of fuel mixing in scramjet engine of supersonic vehicles

Haicui Wang, Zhimin Ma, Jing Bian, Liang Cao, Ji-Ke Tan and Dong Li

Energy, 2024, vol. 306, issue C

Abstract: The efficient injection of fuel in the combustion chamber is significant for the advancement of the current supersonic vehicles. This study has focused on the role of non-alignment injector configuration on the fuel mixing of the hydrogen jet inside the combustion chamber of the scramjet engine. The fuel distribution and vortex generation behind both annular and coaxial jets are modeled and compared to disclose the mechanism of fuel diffusion in the combustion chamber. A three-dimensional model of two nozzle angles is produced to visualize the complicated flow interaction of four non-aligned circular jets at supersonic cross-flow. Our results indicate that the strength of the vortex pair produced by the core of the fuel jet is extended more when the angle of the nozzles is increased. The flow visualization of the jet also confirms that the flow becomes more complex in non-alignment jet configurations and fuel mixing is improved by the addition of the internal air jet in the suggested injection model.

Keywords: Supersonic flow; Combustion chamber; Scramjet engine; Hydrogen fuel jet; Mach (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224021637
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:306:y:2024:i:c:s0360544224021637

DOI: 10.1016/j.energy.2024.132389

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:306:y:2024:i:c:s0360544224021637