EconPapers    
Economics at your fingertips  
 

Sustainable hydrogen production from flare gas and produced water: A United States case study

Mohammad Moosazadeh, Shahram Ajori, Vahid Taghikhani, Rouzbeh G. Moghanloo and ChangKyoo Yoo

Energy, 2024, vol. 306, issue C

Abstract: Gas flaring and produced water (PW) emissions are common environmental challenges with significant impacts on the oil production industry. This study proposes a novel approach to address these concerns by developing energy self-sufficient networks for simultaneous utilization of flare gas (FG) and PW for sustainable hydrogen production. Three distinct scenarios are analyzed: hydrogen production without CO2 capture (Hydra), fossil fuel-based (FF) hydrogen production with CO2 capture and utilization in enhanced oil recovery (HydraCap-FF), and a solar-thermal-assisted HydraCap-FF system (HydraCap-RE). Techno-economic and environmental models are constructed for each scenario's optimal configuration, enabling a comparative analysis of their economic viability and environmental impact. Additionally, the designed systems are examined through a flexibility analysis to evaluate input materials and their influence on the system's viability. Results highlight the promising potential of HydraCap-RE, achieving significant reductions in CO2 emissions and water footprint compared to traditional methods. The HydraCap-RE generates hydrogen with the cost of 2.86 $/kg H2, hydrogen yield of 31.25 kg H2/100 kg FG, specific emission of 0.86 kg CO2/kg H2 and water footprint of 0.185 kg H2O/kg H2. Moreover, the flexibility analysis indicates that an optimal FG/PW ratio of 0.53 yields the highest economic value. The results demonstrate that deploying HydraCap-FF in the Permian, Bakken, and Eagle Ford shale regions can produce 0.807, 0.454, and 0.121 million tons of hydrogen annually, respectively, and reduce CO2 emissions by 6.37, 3.58, and 0.956 million tons, respectively. Furthermore, the HydraCap-RE deployment in these shale fields outperformed, with 17 % higher hydrogen production and 28.42 % lower CO2 emissions. These findings provide valuable insights for decision-makers seeking to reduce CO2 emissions the oil and gas industries and providing clean and sustainable products for these areas.

Keywords: Carbon and water footprint; Hydrogen production; Net-negative alternative; Supercritical water desalination; Techno-economic and environmental study (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224022096
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:306:y:2024:i:c:s0360544224022096

DOI: 10.1016/j.energy.2024.132435

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:306:y:2024:i:c:s0360544224022096