EconPapers    
Economics at your fingertips  
 

Quasi-steady state mechanism study of a three bypass variable cycle engine fan based on variable outlet guide vane and variable area bypass injector

Haoran Wang, Shengfeng Zhao, Qiaodan Luo, Xingen Lu and Zhu Junqiang

Energy, 2024, vol. 306, issue C

Abstract: During high Mach number flight missions, the corrected rotational speed and throughflow capability of aero engines significantly decreases, resulting in insufficient thrust generation. The maintenance of preferable performance across a wide range of rotational speeds presents a challenge for conventional aviation power equipment. To address this issue and achieve wide speed range flight, three-dimensional model of the high-throughflow front and rear fans of a three external bypass variable cycle engine is established, and static pressure is applied at the bypass stream outlet to simulate the rear variable area bypass injector (RVABI) valve opening. The influence mechanism of different stator stagger angles and the RVABI opening on the performance and flow field of the front and rear fans is investigated. The results show that the fan total pressure ratio, isentropic efficiency, and mass flow rate at 58 % corrected rotational speed can be significantly improved by adjusting the stagger angle of the front fan second-stage stator (S2). Notably, the mass flow rate increases by 15.74 % when adjusted by 28°. Furthermore, noticeable variations are observed in the flow field at first stage rotors (R1) and S2. Quantitative analysis shows that the incidence angle in R1 can be effectively decreased by adjusting the S2 stagger angle, which causes a notable decrease in the blade tip load and the mitigation of the leakage flow losses. The S2 blockage is a crucial factor limiting the flow capacity of the turbojet mode, and the blockage and wake losses significantly decrease when S2 is opened. This study elucidates the influence of different stagger angles of S2, combined with variations in RVABI opening, on the aerodynamic performance of the fan, providing valuable insights for selecting key adjusting parameters.

Keywords: Three bypass variable cycle engine; Front and rear fans; Mode transition; Quasi-steady state; Variable outlet guide vane (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224022217
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:306:y:2024:i:c:s0360544224022217

DOI: 10.1016/j.energy.2024.132447

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:306:y:2024:i:c:s0360544224022217