EconPapers    
Economics at your fingertips  
 

An improved dung beetle optimizer- hybrid kernel least square support vector regression algorithm for state of health estimation of lithium-ion batteries based on variational model decomposition

Tao Zhu, Shunli Wang, Yongcun Fan, Nan Hai, Qi Huang and Carlos Fernandez

Energy, 2024, vol. 306, issue C

Abstract: Accurate prediction of the state of health (SOH) of lithium-ion batteries is important for real-time monitoring and safety control of lithium-ion batteries. In this paper, a hybrid kernel least square support vector regression (HKLSSVR) prediction model based on variational modal decomposition (VMD) and improved dung beetle optimization (IDBO) is proposed. First, the original data is decomposed using VMD to reduce the non-smoothness of the data and to reduce the impact of non-smoothness on the prediction performance. The prediction is then carried out using the IDBO-HKLSSVR model, where the parameters in the prediction model are optimized using the IDBO optimization algorithm. Finally, all prediction components are superimposed to obtain the final results. The experimental results show that the coefficients of determination of the SOH of the six batteries predicted by the model are above 0.98388, which are higher than those of the other algorithms, confirming the high accuracy of the model in predicting the SOH of lithium-ion batteries. Meanwhile, compared with the existing prediction methods, the VMD-IDBO-HKLSSVR model proposed in this paper can predict the SOH of lithium-ion batteries more accurately.

Keywords: Lithium-ion battery; State of health; Improved dung beetle optimizer; Hybrid kernel least square support vector regression (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224022382
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:306:y:2024:i:c:s0360544224022382

DOI: 10.1016/j.energy.2024.132464

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:306:y:2024:i:c:s0360544224022382