Integrated demand response method for heating multiple rooms based on fuzzy logic considering dynamic price
Pengmin Hua,
Haichao Wang,
Zichan Xie and
Risto Lahdelma
Energy, 2024, vol. 307, issue C
Abstract:
We consider an educational building heated by a combination of district heating (DH) and a local air source heat pump. We have developed an integrated demand response method for multiple rooms, consisting of an optimization layer and a control layer, to maintain thermal comfort and save energy and costs. For the optimization layer, we apply fuzzy logic to adjust indoor temperature setpoints to respond to dynamic heat prices and propose an optimal heat supply method to find optimal heat supply schemes. For the control layer, a multi-objective model predictive control (MPC) has been developed to manage indoor thermal conditions across multiple rooms. To test and verify the integrated demand response method, we build a multi-room simulation model using the CARNOT Toolbox. The results show that adopting different indoor temperature setpoints during working and nonworking hours, combined with the MPC method, has an energy-saving potential of 9.1 % compared to maintaining a constant indoor temperature using DH alone. Adjusting temperature setpoints using fuzzy logic utilizes the building's heat storage capacity to increase energy flexibility, reaching 16.0 % savings in energy and reducing 12.6 % heating costs.
Keywords: Demand response; District heating; Air source heat pump; Multi-objective model predictive control; Fuzzy logic (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422402351X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:307:y:2024:i:c:s036054422402351x
DOI: 10.1016/j.energy.2024.132577
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().