Multi-energy load forecasting for integrated energy system based on sequence decomposition fusion and factors correlation analysis
Daogang Peng,
Yu Liu,
Danhao Wang,
Huirong Zhao and
Bogang Qu
Energy, 2024, vol. 308, issue C
Abstract:
Considering the seasonal and cyclical fluctuation of loads and the complexity of multi-energy coupling, this paper proposes a novel load forecasting model based on sequence decomposition fusion and factors correlation analysis. Firstly, the variational mode decomposition (VMD) is used to decompose the highly complex load sequences and the novel influencing factors correlation analysis (ICA) is proposed to select strong factors and remove weak feature variables to construct the input and output set. Secondly, this paper proposes the combined forecasting framework MTL-CNN-BiGRU-Attention to simultaneously forecast the cooling, heat, and electricity loads, along with BiGRU used as the hard sharing layer to deeply explore the coupling information between different types of loads. Meanwhile, the gray wolf algorithm (GWO) is improved to accurately and quickly search for the optimal hyperparameters of the model. Finally, the dataset of a comprehensive energy station in Shanghai is used to test our model, and the results show that the MAPE of the cooling and electricity loads forecasting achieve 5.501% and 5.821% in summer and 5.921%, 7.899% and 7.541% for the cooling, heat and electricity loads in transition season and winter, which confirms the effectiveness and superiority of our model.
Keywords: Integrated energy system; Multi-energy load forecasting; Multi-task learning; Sequence decomposition fusion; Factors correlation analysis (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224025702
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:308:y:2024:i:c:s0360544224025702
DOI: 10.1016/j.energy.2024.132796
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().