A novel fuel cell cathode hybrid intake structure design and control for integrated hydrogen energy utilization system
Shihao Zhu,
Hongming Hu,
Banghua Du,
Xinyu Lu,
Yang Li,
Changjun Xie,
Leiqi Zhang and
Bo Zhao
Energy, 2024, vol. 308, issue C
Abstract:
The typical Integrated Hydrogen Energy Utilization System (IHEUS) does not recycle oxygen. For maximizing the system's efficiency, this study proposes a method for recycling byproduct oxygen in a Fuel Cell (FC) hybrid cathode intake structure and its control. By introducing the pure oxygen produced as a byproduct of hydrogen production into the FC, a hybrid cathode intake structure is formed with the air branch. To control this structure, models of the oxygen and air branch, and the FC stack are established. Subsequently, using BiLSTM network to learn historical data and extract relevant features, the output power demand of the FC system is predicted. Based on the prediction results, the required gas flow is calculated, and a fuzzy PID control strategy is employed to adjust the opening of the solenoid valve to change the gas flow to meet the demand. Finally, comparative studies show that our FC system, operating in a pure oxygen state, outperforms conventional air intake design: heat production increases by 13 %, electric efficiency improves by 20 %, and pure water savings reach 65.57 %. The air compressor witnesses a substantial 37.63 % reduction in power consumption, contributing to an overall energy efficiency increase of 8.92 % for the IHEUS.
Keywords: Proton exchange membrane fuel cell; Hybrid intake system; Fuzzy PID; Integrated hydrogen energy utilization system; Energy efficiency (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224026276
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:308:y:2024:i:c:s0360544224026276
DOI: 10.1016/j.energy.2024.132853
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().