EconPapers    
Economics at your fingertips  
 

Battery state-of-health estimation incorporating model uncertainty based on Bayesian model averaging

Qingrong Zou and Jici Wen

Energy, 2024, vol. 308, issue C

Abstract: Accurately estimating the state-of-health (SOH) of lithium-ion batteries is crucial for efficient, reliable, and safe use. However, the degradation of these batteries involves complex and intricate failure mechanisms that cannot be fully captured by a single model. To tackle this challenge, we propose an SOH estimation method based on Bayesian Model Averaging (BMA), which effectively accounts for both parameter and model uncertainties by combining estimations from different model implementations. It provides both point-value estimates and the probability distribution estimates, delivering results in a fraction of a second. Evaluated on three open-source datasets, the maximum absolute error of SOH estimation is within 0.03, and the Continuous Ranked Probability Score is within 0.015. Compared to optimal individual models, the proposed BMA method reduces the prediction error of point estimates by half to two-thirds. Additionally, the prediction error for probability estimation decreases by an order of magnitude. Moreover, the comparison studies with respect to the Gaussian Process Regression model and the Quantile Regression Forests model demonstrate the applicability and superiority of proposed method. These results highlight the potential of the BMA method to advance battery SOH estimation and facilitate reliable battery management.

Keywords: State-of-health estimation; Model uncertainty; Parameter uncertainty; Lithium-ion batteries; Bayesian model averaging (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224026586
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:308:y:2024:i:c:s0360544224026586

DOI: 10.1016/j.energy.2024.132884

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224026586