Carbone-neutral oriented methanol-reforming HT-PEMFC cogeneration based on absorption power refrigeration cycle
Zhenxi Ma,
Naiji Zhang,
Wei Wu,
Li Sun,
Xiaosong Zhang and
Liang Cai
Energy, 2024, vol. 308, issue C
Abstract:
Methanol is considered as a promising hydrogen carrier in accelerating the carbon-neutral applications of fuel cell cogeneration. However, the methanol reforming process emits CO2 whose efficient recycling is challenging due to the inevitable power and cooling consumption. To this end, this paper considers the methanol reforming based high-temperature proton exchange membrane fuel cells (HT-PEMFC) cogeneration system, equipped with ammonia absorption power-refrigeration cycle (APRC). The waste heat in the integrated system is utilized for the fuel preheating, evaporation and reforming, driving APRC, and water heating, achieving a cascaded utilization of thermal energy. By building the mathematical models for each subsystem, thermodynamic and economic assessments are investigated. The results confirm that the waste heat of HT-PEMFC is sufficient to drive both methanol reforming and APRC, with additional electricity output from APRC. At a current density of 0.53 A/cm2, the exergy efficiency of the integrated system under the design condition is 0.525 and reaches a maximum value of 0.565 at a reaction temperature of 180 °C and pressure of 1.2 bar. The techno-economic analysis reveals a dynamic payback period of 5.2 years and net present value of 1.14 M$ with a 20-year lifespan of the integrated system.
Keywords: HT-PEMFC; Methanol steam reforming; Absorption power refrigeration cycle; CO2 liquefaction; Performance evaluation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224027464
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:308:y:2024:i:c:s0360544224027464
DOI: 10.1016/j.energy.2024.132972
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().