EconPapers    
Economics at your fingertips  
 

Series arc-induced internal short circuit leading to thermal runaway in lithium-ion battery

Wenqiang Xu, Kai Zhou, Hewu Wang, Languang Lu, Yu Wu, Bin Gao, Chao Shi, Xinyu Rui, Xiaogang Wu and Yalun Li

Energy, 2024, vol. 308, issue C

Abstract: With the widespread implementation of battery energy storage systems (BESSs), significant attention has been focused on issues involving electrical safety. The series arc hazard caused by loose connectors between batteries has become a serious problem. However, research findings for the evolution process of the series arc and the related hazard principle are still unclear. Therefore, in this study we focus on the series arc at the negative terminal of a 20 Ah prismatic lithium-ion battery, establish an experimental platform for the arc, and conduct research on the hazards process. Our results indicate that the arc can induce the thermal failure of the battery when the power supply voltage is 300 V and the circuit current is 15 A. Through a battery voltage analysis, computed tomography scans, and jellyroll disassembly, we uncover the evolution process and hazard laws of series arcs and clarify the failure pathways of arc-induced battery faults. The hotspots formed by arc melt the casing and cause electrolyte leakage. In addition, the heat transfer from the battery terminal to the jellyroll induces separator melting and internal short circuits in batteries. These cause an internal short circuit between the anode and the cathode, as well as combustion of the leaked electrolyte, which give rise to distinct thermal runaway behavior under different states of charge. By comparing runaway behavior with failures triggered by external heating, we clarify that the series arc is a novel risk factor that induces failure. This study addresses the gap in research related to arc effects on battery safety. This is crucial to the development of safe battery systems that do not present arc hazards.

Keywords: Series arc hazard; Battery thermal runaway; Experimental platform; Failure pathways (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224027737
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:308:y:2024:i:c:s0360544224027737

DOI: 10.1016/j.energy.2024.132999

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:308:y:2024:i:c:s0360544224027737