Insight into co-pyrolysis of waste polypropylene and engine oil for liquid hydrocarbons and interaction mechanism by kinetic analysis and DFT simulation
Donglin He,
Hao Duan,
Tingting Zhang,
Hong Yin,
Yafei Chen,
Yangpin Ou and
Haifeng Gong
Energy, 2024, vol. 308, issue C
Abstract:
Plastic pyrolysis is an efficient and cost-effective way of processing plastic waste, producing oil, gas, and coke. Oil production from waste plastics is a promising technology, and co-pyrolysis of multicomponent materials can help to promote reactions and optimize the products. Therefore, this study examines the co-pyrolysis reaction of another hazardous waste, engine oil, with waste plastics. The co-pyrolysis performance of plastic is first evaluated and the TG-DTG curve is dynamically analyzed. Then the synergistic behavior of polypropylene and engine oil co-pyrolysis is revealed through a combination of experiments, kinetic analysis, and DFT calculations. For physical interactions, waste engine oil can improve heat and mass transfer performance during pyrolysis, significantly increase the heating rate of the reactants. Furthermore, the yield of liquid-phase products is increased. For chemical interactions, the optimal pyrolysis path was studied according to activation energies and the interaction mechanism was elucidated. Moreover, the optimal pyrolysis paths of the engine oil and PP were identical, with the resulting pyrolysis products having minimal difference in carbon chains. However, the detailed reaction paths need to be further explored owing to the complexity of the process. And the detailed composition of the pyrolysis products requires further comprehensive analysis.
Keywords: Waste plastic; Co-pyrolysis; Kinetic analysis; DFT simulation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224027865
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:308:y:2024:i:c:s0360544224027865
DOI: 10.1016/j.energy.2024.133012
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().