EconPapers    
Economics at your fingertips  
 

Experimental investigation on the oil extraction process for a novel underground oil storage method: Oil storage in salt cavern insoluble sediment voids

Xinxing Wei, Xilin Shi, Hongling Ma, Shengnan Ban and Weizheng Bai

Energy, 2024, vol. 309, issue C

Abstract: Large-scale underground oil storage is vital for addressing the energy crisis. Leveraging the insoluble sediment space at the bottoms of salt caverns for oil storage is particularly effective in high-impurity salt mines, enhancing oil storage capacity. The process of extracting oil from the sediment void is essential for utilizing this resource. Three experimental devices were developed to investigate this extraction process. We conducted experiments on oil extraction processes and rates for various oil types, analyzing weight changes and influencing factors. The sediment and water content in the extracted oil were also evaluated. Results indicated that extracting oil from the sediment void is feasible, yielding average recovery rates over 90.0 %. High-viscosity oil at 50 °C exhibited three stages: initial stability, a rapid rise, and final stability. Low-viscosity oil correlated with brine injection rates, displaying a rapid rise, stable phase, and subsequent decline. Petrolatum extraction was easier than diesel extraction, and ground temperature improved recovery rates. Changes in water and sediment content had minimal impact on oil quality. This research provides insights for large-scale underground energy storage.

Keywords: Underground energy storage; Sediment void oil storage; Oil extraction process; Salt cavern oil storage; Insoluble sediment particles (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224028366
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:309:y:2024:i:c:s0360544224028366

DOI: 10.1016/j.energy.2024.133061

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:309:y:2024:i:c:s0360544224028366