EconPapers    
Economics at your fingertips  
 

Carbon-free power generation strategy in South Korea: CFD simulation for ammonia injection strategies through boiler burner configurations in tangentially fired boiler

Yijie Zeng, Joonwoo Kweon, Gyeong-Min Kim and Chung-Hwan Jeon

Energy, 2024, vol. 309, issue C

Abstract: To achieve carbon neutrality in power generation, incorporating ammonia-coal co-firing into coal-fired boilers effectively reduces CO2 emissions. Here, we aimed to optimize ammonia injection methods by investigating the feasibility of 20 % ammonia co-firing in a pulverized coal (PC) boiler through numerical simulations. These simulations aim to analyze the effects of different ammonia injection strategies and burner configurations on the combustion performance and NOx emission characteristics of a 500 MW tangentially fired PC boiler. Results showed that compared to using five burners, single-burner injection reduced outlet NO concentration by 22.72 ppm and unburned carbon content to 0.30 %, which is 0.80 % lower than multi-burner injection and even below the 0.45 % in coal-only combustion. The optimal case (burner A for ammonia injection) achieved a furnace outlet flue gas temperature of 1247.35 K, close to 1241.98 K in coal-only combustion, with the lowest NO emissions (193.89 ppm) among all ammonia co-firing cases. Positioning the single burner for ammonia injection revealed that utilizing the blending method with the ammonia injection burner, such as in the case of upper burner injection, increases both furnace temperature and high-temperature zone areas. However, employing in-boiler blending methods with lower-positioned burner ammonia injection distributes high-temperature zones more extensively. Comparing ammonia injection through coal and auxiliary oil burners, using only the lowest-level burner can significantly reduce NOx emissions while maintaining combustion and thermal efficiencies. This study is the first to simultaneously consider the number, position, method, and type of ammonia injection burners in large-scale commercial coal-fired boilers, providing a valuable reference for future research and practical boiler operations. This comprehensive analysis underscores how ammonia injection strategy and position can optimize ammonia-coal co-firing boiler performance.

Keywords: Ammonia co-firing; Pulverized coal boiler; Ammonia injection strategies; Burner configurations; NOx emissions (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224028512
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:309:y:2024:i:c:s0360544224028512

DOI: 10.1016/j.energy.2024.133076

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:309:y:2024:i:c:s0360544224028512