A novel multi-objective optimization scheme of electric turbo compressor system in hydrogen fuel cell for reducing energy consumption and axial thrust
Zhen Wang,
Rongchao Zhao,
Zhiyong Zhu,
Weilin Zhuge and
Yangjun Zhang
Energy, 2024, vol. 309, issue C
Abstract:
Electric turbo compressor (ETC) can recover the exhaust energy and reduce the motor power consumption, which is the future development of the air management system for fuel cell. However, the large imbalances of axial thrust and energy between the compressor and turbine leads to low reliability and efficiency of ETC. In this study, a multi-objective optimization scheme was proposed to explore the lowest ETC axial thrust and electric power consumption. First, the coupled model including compressor, turbine and axial thrust sub-models were established in MATLAB. To verify the model, computational fluid dynamics(CFD) model were established in ANSYS CFX and experimental tests were carried out. The electric power differences between the MATLAB model and experiment is within 4.36 % and the axial thrust deviations between the MATLAB and CFD model is within 5.46 %.Then, eight geometric parameters of compressor and turbine rotors are selected as independent optimization variables. NSGA-ΙΙ multi-objective optimization algorithm was adopted to search for low axial thrust and power consumption solutions. Finally, the optimization results show that the efficiency of the compressor and turbine is increased by 6.39 % and 2.75 % at design point, respectively. The electric power consumed by the motor is reduced by 7.80 % and the axial thrust of the ETC is reduced by 18.83 %.
Keywords: Fuel cell; Electric turbo compressor; Energy recovery; Axial thrust; Coupled model; Multi-objective optimization (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224028718
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:309:y:2024:i:c:s0360544224028718
DOI: 10.1016/j.energy.2024.133096
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().