EconPapers    
Economics at your fingertips  
 

Efficient layout optimization of offshore wind farm based on load surrogate model and genetic algorithm

Xiaofeng Zhang, Qiang Wang, Shitong Ye, Kun Luo and Jianren Fan

Energy, 2024, vol. 309, issue C

Abstract: Wind farm layout optimization (WFLO) has become a significant approach to enhancing the efficiency of wind energy utilization. However, load also represents a critical factor that must be considered during optimization. To enhance power generation while controlling loads within limitations, an innovative load-constrained layout optimization method that employs a surrogate model based on artificial neural networks and genetic algorithms was proposed. This paper verified the accuracy of the surrogate model and then conducted layout optimizations on a single and a full wind condition case to assess the proposed method. The results indicated that the mean absolute percentage errors of load channels can meet the precision requirements for WFLO. A comparison of layout optimization results between the method proposed in this paper and the traditional method showed that in the single-wind-condition case, the method proposed in this paper reduced the maximum load by 5.64 % compared to the traditional method, with nearly identical power output; in the full-wind-condition case, the reduction of maximum load was 1.70 %, while only sacrificing the annual power generation by 0.10 %. This study provides a load-constrained WFLO method, promising to effectively ensure the lifespan of wind turbines while increasing power generation and offering significant engineering value.

Keywords: Offshore wind farm; Load; Surrogate model; Genetic algorithm; Layout optimization (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224028810
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:309:y:2024:i:c:s0360544224028810

DOI: 10.1016/j.energy.2024.133106

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:309:y:2024:i:c:s0360544224028810