Development and assessment of an integrated multigenerational energy system with cobalt-chlorine hydrogen generation cycle
Sulenur Asal,
Adem Acır and
Ibrahim Dincer
Energy, 2024, vol. 309, issue C
Abstract:
This study aims to develop and assess a new multigeneration system where nuclear heat is utilized as the energy source. The multigeneration system is further designed to generate power, cooling, freshwater and hydrogen. In the present multigeneration system, five main subsystems, including high-temperature gas-cooled pebble bed nuclear reactors, a Rankine cycle, a cobalt-chlorine thermochemical cycle, a multi-effect desalination system and an ammonia-water absorption refrigeration system are integrated for synchronized operation. The analyses of the present system are carried out with the approaches of energy and exergy. This integrated system uses a total of 1000 MW thermal energy that is obtained from four units of high-temperature gas-cooled pebble bed nuclear reactor. Using all the thermal energy that comes from the nuclear reactors, a total of 346.99 MW of electricity, a total of 1.59 MW of cooling, a total of 384.67 kg/s of freshwater, and a total of 0.25 kg/s of hydrogen are produced. The energetic and exergetic performance coefficients of the ammonia-water absorption refrigeration system are 0.74 and 0.83, respectively. While the energy efficiency for the overall system is calculated as 37.83%, the exergy efficiency is found to be higher as 46.32% with the multiple useful outputs which help exergetically improve the overall system.
Keywords: Hydrogen; Co-Cl cycle; Multigeneration; Freshwater; Power; Cooling; Energy; Exergy; Efficiency; Energy sustainability (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224029104
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:309:y:2024:i:c:s0360544224029104
DOI: 10.1016/j.energy.2024.133135
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().