Comparative analysis of data-driven electric vehicle battery health models across different operating conditions
Roushan Kumar,
Kaushik Das and
Anurup Krishna
Energy, 2024, vol. 309, issue C
Abstract:
The work covers the development of a data-driven algorithm and computes the performance of learning models for lithium-ion battery state of health (SOH) estimation. A wide range of environmental and temperature conditions (15 °C, 25 °C, and 35 °C) at different charging and discharging rates of 1C and 2C are used for electric vehicle battery health estimation. The result of the tested data of cell ‘a’ is validated with a different set of cell ‘b’ on identical test parameters, and the results are tabulated and compared. At 25 °C, the mean absolute errors for the regression algorithms decision tree (DT), k-nearest neighbor (KNN), and random forest (RF) are 3.78641E-03, 3.62524E-03, and 6.16931E-03. The mean absolute percent error for regression algorithms DT, KNN, and RF is 1.48921E-03, 1.40631E-03, and 2.40260E-03. The root mean square error for regression algorithms DT, KNN, and RF is 1.26813E-02, 9.73320E-03, and 1.17238E-02, and the mean squared error for regression algorithms DT, KNN, and RF is 1.60816E-04, 9.47351E-05, and 1.37448E-04. The results show that the KNN and DT methods accurately estimate the SOH under diversified operating conditions in comparison with RF methods and can foster advanced battery health monitoring systems.
Keywords: State of health; Lithium-ion battery; Charge cycle; Discharge cycle; Machine learning; Data-driven algorithms (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422402930X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:309:y:2024:i:c:s036054422402930x
DOI: 10.1016/j.energy.2024.133155
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().