Capillary container array structures for efficient, energy-saving, and sustainable evaporative cooling and humidification
Xintao Wu,
Yating Wen,
Hongzhou Wang,
Zhiyuan Sun,
Zhandong Huang and
Jinjia Wei
Energy, 2024, vol. 309, issue C
Abstract:
Evaporative cooling is a widely employed method for air conditioning and heat dissipation, utilizing the phase transition of water to achieve simultaneous cooling and humidification. It relies on high-surface-area solid materials to enhance air-liquid contact upon wetting. However, these water-absorbing materials have drawbacks such as increased air resistance, degradation of water quality, and limited water retention capabilities. This study introduces a novel structure called the capillary container array (CCA) for effective humidification and cooling. The CCA structure overcomes the limitations of traditional methods by incorporating interconnected capillary containers with adjustable spacing and utilizing capillary forces to capture liquid droplets while minimizing the solid component. Compared to commercial paper-based wet curtains, the CCA structure offers significant advantages including strong water retention capabilities, high humidification performance, low air resistance and high pollution resistance. It increases water capacity by 6 times, humidification capacity by 8 %, and temperature drop by 2.2 °C. Moreover, it exhibits a 5-fold longer in water retention duration, a 30 % reduction in air pressure drop and a 3-fold increase in the performance coefficient, and maintains excellent water quality (<1 NTU) over prolonged operation. These advancements make the CCA structure highly promising for various applications in agriculture, industry and environmental conservation.
Keywords: Capillary container; Humidification; 3D printing; Evaporative cooling (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224029347
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:309:y:2024:i:c:s0360544224029347
DOI: 10.1016/j.energy.2024.133159
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().