EconPapers    
Economics at your fingertips  
 

Effect of pre-oxidation and cooling process on characteristics and mechanism of the coal re-ignition

Xiaoxue Xu, Shujie Yuan, Jinhu Li and Shengli Guo

Energy, 2024, vol. 309, issue C

Abstract: Based on the engineering background that the sealed fire area is easy to reignite, the reignition characteristics of pre-oxidized coals (POC) after cooling are studied. Predecessors mainly explain this problem from the perspective of pre-oxidation affecting coals pore structure. This paper analyzes the effects of different pre-oxidation temperatures and cooling atmospheres on coal physical and chemical structure. The changes of coals during oxidation-cooling-reoxidation were studied by means of a programmed heating device, low temperature nitrogen adsorption experiment, FTIR and quantum chemical calculation. The results show that the average pore size of the coal cooled in nitrogen at the same pre-oxidation temperature is smaller than that of the coal cooled in dry air, while the spontaneous combustion characteristics of the coal cooled in nitrogen are stronger than those of raw coal, and spontaneous combustion characteristics of coal cooled in air are the opposite. The oxygen-containing functional groups of the coal cooled in nitrogen are pyrolyzed to produce active sites which can exist stably in nitrogen. Then, the rationality of “The active sites tend to be alkyl radical” is analyzed and speculated by molecular orbital theory, and it's found that alkyl radicals can release lots of heat at 30 °C.

Keywords: Mine fire; Coal spontaneous combustion; Active sites; Chain reaction (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224029529
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:309:y:2024:i:c:s0360544224029529

DOI: 10.1016/j.energy.2024.133177

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:309:y:2024:i:c:s0360544224029529