EconPapers    
Economics at your fingertips  
 

Investigate on spontaneous combustion characteristics of lignite stockpiles considering moisture and particle size effects

Hemeng Zhang, Pengcheng Wang, Yongjun Wang, Hung Vo Thanh, Ichhuy Ngo, Xiaoli Lu, Xiaochen Yang, Xiaoming Zhang and Kyuro Sasaki

Energy, 2024, vol. 309, issue C

Abstract: Coal spontaneous combustion (CSC) threatens the safety of the coal industry, with moisture content and particle size being pivotal factors. This study examines the heating dynamics and critical self-ignition temperatures (CSITs) of Baiyinhua lignite stockpiles through wire-mesh basket (WMB) tests at two scales. The CSC process in coal stockpiles unfolds in four stages. Notably, Stage II is notable for significant moisture evaporation between 43 and 84 °C, while Stage IV marks the onset of self-heating. Moisture evaporation absorbs heat, linearly prolonging the Stage II duration, which accounts for 0%–70 % of the total time. Conversely, larger particle sizes enhance pore seepage, effectively shortening the heating time. The time for d = 20 mm (particle size) coal sample to reach ambient temperature is roughly half that of 1.5 mm. CSITs of raw coal increase by 10–15 °C compared to the dry coal, and CSIT of coal samples with d = 50 mm has increased by 17.5 °C compared to 10 mm. Therefore, both an increase in particle size and moisture content increase the CSIT, thereby reducing the propensity for CSC. Frank-Kamenetskii theory and dimensionless analysis predict spontaneous combustion risks in field-scale coal stockpiles. This investigation contributes valuable insights to the estimation and prevention of CSC.

Keywords: Lignite; Spontaneous combustion; Moisture; Particle size; Wire-mesh basket test (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224029682
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:309:y:2024:i:c:s0360544224029682

DOI: 10.1016/j.energy.2024.133193

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:309:y:2024:i:c:s0360544224029682