Experimental and chemical kinetic study on effects of H2-DME fusion addition on laminar premixed flame speed and flame instability for ammonia composite combustion
Changyou Yu,
Liang Guo,
Wanchen Sun,
Hao Zhang,
Peng Cheng,
Yuying Yan,
Genan Zhu,
Mengqi Jiang,
Yanan Guo and
Fei Yue
Energy, 2024, vol. 310, issue C
Abstract:
Improvement of the laminar flame speed and stability for ammonia combustion by using H2 and DME has received significant attention. In this study, the characteristics of NH3/H2, NH3/DME and NH3/H2/DME were investigated in constant-volume bomb with high-speed schlieren technique and chemical kinetics. The results show that DME or H2 addition mainly acts as “start-up" or “acceleration" for ammonia laminar flame speed increasing, respectively. In NH3/H2/DME laminar flame, the increase of DME addition ratio not only increases the intensity but also advances the onset of self-acceleration. At ammonia substitution ratio of 10 %–70 %, the Markstein length of NH3/H2/DME flame are all significantly improved compared with pure ammonia flame. The H2-DME fusion-addition can mitigate the reduction of flame thickness and keep a relatively minor thermal expansion ratio. In NH3/H2/DME laminar flame, DME addition can increase the Lewis number greater than 1.0 at ammonia substitution ratio of 10 %–40 %, which significantly reduce the thermo-mass diffusion instability in comparison with H2 addition. Based on mixture design method and experimental validation, it was found that the flame speed at 473 K, 5 bar and φ = 1 for NH3/H2/DME blending ratios of 53.94 %/26.61 %/19.45 % are greater than those of NH3/H2 and NH3/DME with the same ammonia substitution ratios.
Keywords: Ammonia laminar premixed flame; H2-DME fusion-addition; Laminar flame speed; Flame instability; Mixture design method (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224029505
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:310:y:2024:i:c:s0360544224029505
DOI: 10.1016/j.energy.2024.133175
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().