EconPapers    
Economics at your fingertips  
 

China's provincial power decarbonization transition in a carbon neutral vision

Jinhui Ren, Qianzhi Zhang and Wenying Chen

Energy, 2024, vol. 310, issue C

Abstract: The power sector plays a crucial role in achieving the China's carbon neutrality target. However, there remain knowledge gaps regarding provincial emission reduction efforts toward carbon neutrality and the impact of carbon flows embodied in electricity transmissions. This study built a modeling framework, linking a bottom-up multi-regional power system model and Quasi-Input-Output approach, to investigate the provincial-level power system transition. Multiple combined scenarios based on shared socio-economic developments and different carbon mitigation policies were designed for a comprehensive assessment. Results indicates that the transition of the power system by 2060, under various scenarios, necessitates 7–7.8 TW of wind and solar photovoltaic power, 4810–6309 TWh of electricity transmissions, and 140–262 GW of coal power retrofits. Notably, carbon emission flows will accumulatively reach 12.7–18.7 Gt from 2020 to 2060. Inner Mongolia will bear a cumulative of more than 5 Gt of carbon flows from North China. When considering the indirect emissions, load centers such as Shandong will have higher peak emissions, and Shandong will replace Inner Mongolia as the largest emitter province. In addition, provincial emission factors under the influence of complex electricity transmissions and carbon flows are estimated.

Keywords: Carbon neutrality; Power sector; Carbon emission pathways; Electricity transmissions; Carbon flows (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224029864
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:310:y:2024:i:c:s0360544224029864

DOI: 10.1016/j.energy.2024.133211

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:310:y:2024:i:c:s0360544224029864