EconPapers    
Economics at your fingertips  
 

Energy consumption forecasting in PCM-integration buildings considering building and environmental parameters for future climate scenarios

Xeniya Aliyeva, Shazim Ali Memon, Kashif Nazir and Jong Kim

Energy, 2024, vol. 310, issue C

Abstract: Despite numerous machine learning methods being employed to predict the energy consumption of PCM-integrated buildings, key research gaps remain. Most studies focus solely on building parameters while omitting important environmental parameters, including precipitation and air pressure. No study evaluated and proposed prediction models for PCM-integrated buildings considering future climate scenarios. Also, as per the authors′ knowledge, no researcher has assessed the impact of variations in the hyperparameter, especially for decision tree-based prediction models to develop a reliable prediction model with less complexity and a high degree of interpretability between independent and dependent variables. This research addresses these gaps by evaluating fine, medium, and coarse decision trees for predicting energy consumption in PCM-integrated buildings under future climate scenarios by considering extensive building and environmental parameters simultaneously. A database for energy consumption was created through energy simulations for 11 cities in hot semi-arid climates. The Fine Decision Tree (FDT3) emerged as the most accurate prediction model, with R2 values over 94 % in training and testing phases based on model evaluation and validation processes. Parametric analysis further revealed that both environmental and building parameters are crucial in accurately predicting the energy consumption of PCM-integrated buildings using FDT3.

Keywords: Phase change material; Decision tree; Machine learning; Energy consumption; Parametric analysis (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422403024X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:310:y:2024:i:c:s036054422403024x

DOI: 10.1016/j.energy.2024.133248

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:310:y:2024:i:c:s036054422403024x