EconPapers    
Economics at your fingertips  
 

The effects of geometric factors on power generation performance in solar chimney power plants

Hesam Setayesh, Alibakhsh Kasaeian, Mohammad Najafi, Mohammadreza Madani Pour and Mojtaba Akbari

Energy, 2024, vol. 310, issue C

Abstract: This research aims to create an admissible source for specifying the relation between the plant's output power and specified geometrical parameters unique to each simulated chimney dimension. In the current study, the solar chimney output power has been studied considering 49 solar chimneys, including different collector diameters, chimney heights, and chimney diameters. The study employs the Ansys-CFX to simulate the numerical model for the unsteady k-ε turbulent flow for a vast number of geometries. The obtained results indicate that the velocity as the main factor in generating the output power has significantly improved by elevating the collector radius. The output power increased up to 50 % by elevating the collector radius and around 30 % by enhancing the chimney heights which cause an increase in airflow, temperature differentials. Moreover, increasing the chimney height has generally ascended the power plant system. Among all geometrical parameters, chimney radius had the least impact on solar chimney performance. The results indicate that the best ratio between collector radius and chimney height is 6 %–10 % to achieve the optimized output power. Our findings were verified with the available experimental setups.

Keywords: Solar chimney; Computational fluid dynamics; Geometrical analysis; Optimization; Power generation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224030408
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:310:y:2024:i:c:s0360544224030408

DOI: 10.1016/j.energy.2024.133264

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:310:y:2024:i:c:s0360544224030408