EconPapers    
Economics at your fingertips  
 

Investigating the performance of a gas turbine system combined with steam methane reforming as a thermochemical recuperator in a power, cooling, freshwater, and hydrogen production multigeneration system

Zuocai Dai and Xiaomin Yin

Energy, 2024, vol. 311, issue C

Abstract: Depletion of fossil fuel resources at a high speed and increasing demand for energy supply for various purposes in today's life integrated with industry has led to collective contemplation for the optimal and maximum utilization of fossil fuels through the implementation of multigeneration systems. In the presented study, a multigeneration system for cooling, power, freshwater, and Hydrogen production is proposed and investigated from exergy, energy, and economic viewpoints through a specific scenario. A case study is performed, revealing that the system can deliver a net output power of 16,251.8 kW, a cooling load of 15,905.0 kW, produce freshwater at a rate of 3.891 kg/s, and generate hydrogen at 0.284 kg/h. The energy and exergy efficiencies of the system are 60.48 % and 32.55 %, respectively. An economic analysis shows a payback period of 0.474 years. A parametric evaluation is performed to perceive the system operation in various conditions. Subsequently, a multi-objective optimization using the MOPSO-LINMAP method is conducted to identify the optimal operating conditions for the system. The optimization results are compared with the case study findings, demonstrating further improvements in performance metrics. The optimized system achieves a slightly higher energy efficiency of 61.62 % and a lower payback period of 0.40 years, underscoring the benefits of the optimization process. This study highlights the potential of the proposed system to efficiently and economically meet the demands for power, hydrogen, cooling, and freshwater in various applications.

Keywords: Steam methane reforming; Multigeneration system; Exergoeconomic assessment; Hydrogen production; Multi-objective optimization (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224031220
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:311:y:2024:i:c:s0360544224031220

DOI: 10.1016/j.energy.2024.133346

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:311:y:2024:i:c:s0360544224031220