EconPapers    
Economics at your fingertips  
 

Thermodynamic and economic analysis of a novel compressed air energy storage system coupled with solar energy and liquid piston energy storage and release

Yufei Zhang, Wenlong Zhang, Ruixiong Li, Huanran Wang, Xin He, Xiangdong Li, Junyu Du and Xuanhao Zhang

Energy, 2024, vol. 311, issue C

Abstract: Compressed air energy storage (CAES) is one of the important means to solve the instability of power generation in renewable energy systems. To further improve the output power of the CAES system and the stability of the double-chamber liquid piston expansion module (LPEM) a new CAES coupled with liquid piston energy storage and release (LPSR-CAES) is proposed. The coupled LPEM conducts suction stage B at the end of the expansion stage, ensuring stable exhaust pressure and temperature for the module. By establishing the thermodynamic and economic models of LPSR-CAES, the effect laws of key node parameters on the system performance are investigated. The results show that the heat transfer between liquid droplets and air dominates the heat transfer in LPEM. The proposed LPEM exhibits excellent isothermal performance and stability, with a maximum temperature difference of about 20 K during the cycle, and stable exhaust temperature changes within 10 K. Under the design conditions, the converted electrical efficiency, round-trip efficiency, exergy efficiency and net present value of the system are 68.31 %, 58.86 %, 66.99 % and 12.25 M$ respectively. The higher the solar supplement temperature, the more outstanding the thermal and economic performance of the system. The short-term energy storage system performance of the proposed system is more prominent. Based on the actual light data, the system can achieve 72.09 % and 69.41 % of converted electrical efficiency and exergy efficiency, respectively, at the 219th day. The results of this study provide theoretical support for the engineering application of the proposed system.

Keywords: Compressed air energy storage; Liquid piston; Thermodynamic analysis; Economic analysis (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224031700
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:311:y:2024:i:c:s0360544224031700

DOI: 10.1016/j.energy.2024.133394

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:311:y:2024:i:c:s0360544224031700