EconPapers    
Economics at your fingertips  
 

Multi-fidelity data mining-based design optimization framework for scramjet-based aircraft

Jun-xue Leng, Yang Shen, Wei Huang, Kai An, Can-can Zhou and Zhen-guo Wang

Energy, 2024, vol. 311, issue C

Abstract: Aircraft design faces complex multidisciplinary problems and often involves numerous design variables, making direct optimization a time-consuming task. With the development of big data and machine learning technologies, using data mining methods to assist optimization has become key to addressing the inefficiency in multidisciplinary design optimization (MDO). To address the high cost of data acquisition in current data mining, this paper proposes an aircraft design optimization framework based on multi-fidelity data mining, using a large amount of inexpensive cursory estimation data to execute the MDO process and form a multidisciplinary optimization database. Then, data mining methods are used to decouple disciplinary relationships, transforming multidisciplinary coupling problems into simpler multi-objective problems. Subsequently, under viscous CFD computation conditions, the EDGE-p-BFFD deformation method is used to fine-tune the obtained configurations, further enhancing multidisciplinary performance. Before both optimizations, data mining methods were used to analyze the impact of design variables on objective functions, forming design knowledge and completing variable selection. In the multidisciplinary optimization practice of airbreathing aircraft, it can be found that the proposed framework effectively achieves disciplinary decoupling and explores the relationship between shape and performance. In the multidisciplinary optimization of the waverider based on cursory estimations, particle swarm optimization increased the aircraft's cruising range by 8.74 %. In the multi-objective optimization of the lifting body based on viscous CFD calculations, data mining was used to transform the problem into several key objectives. The MOEA/D algorithm increased the range by 2.9 %, validating the effectiveness of the data mining-based MDO framework proposed in this paper.

Keywords: Data mining; Airbreathing vehicles; Multidisciplinary design optimization; Cursory estimation; Self-organizing map (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224032249
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:311:y:2024:i:c:s0360544224032249

DOI: 10.1016/j.energy.2024.133448

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:311:y:2024:i:c:s0360544224032249