EconPapers    
Economics at your fingertips  
 

Two decades of progressive cost reduction: A paradigm shift for distributed solar photovoltaics and energy efficiency

Mamahloko Senatla Jaane, Ramesh C. Bansal, Raj M. Naidoo, Nsilulu T. Mbungu, Unarine Bridget Mudau, Teslim Yusuf, Keorapetse Kgaswane and Prathaban Moodley

Energy, 2024, vol. 312, issue C

Abstract: The increasing deployment of renewable energy resources has led to massive energy cost reductions worldwide in the past decade. The emergence of this cost revolution led electricity consumers to increasingly adopt distributed renewable energy resources to decrease dependence on traditional power grids. This paper applies the integrated resource planning framework, the objective of which is to design a least-cost electricity system by looking at renewable energy resources, efficient appliances, and demand response management strategies to reduce electricity bills. The results show that the commercial entity can save its electricity bill by $0.16 if it installs 6 MW solar PV over the lifetime of the solar PV plants. Besides, it was observed that wind turbines were not economically feasible to install at the site because of low wind resources. Biogas power plant is too expensive mainly because of the cost of fuel (waste). It also shows that by retrofitting 2000 compact fluorescent lamps (CFLs) with light-emitting diodes (LEDs), the company can save $0.15 million. By shifting between 0.5 MW and 1.4 MW of heating and cooling demand to periods of low tariff costs, the company can save $0.013 million annually. The climate transition plan for this company relies on PV, efficiency interventions and demand response. The study also demonstrates that an integrated resource planning framework can be used to plan a mini-grid.

Keywords: Integrated resource plan; Solar PV; Demand response; Energy efficiency; Tariff (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544224033486
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:312:y:2024:i:c:s0360544224033486

DOI: 10.1016/j.energy.2024.133570

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu (repec@elsevier.com).

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224033486