A geographic multi-scale machine learning framework for predicting solar irradiation on tilted surfaces
Sameer Al-Dahidi,
Bilal Rinchi,
Raghad Dababseh,
Osama Ayadi and
Mohammad Alrbai
Energy, 2024, vol. 313, issue C
Abstract:
This study addresses the challenge of improving Global Tilted Irradiation (GTI) predictions, with Jordan serving as the case study. The novelty of the work lies in developing machine learning models that predict GTI at national, regional (3 regions), and city-specific (12 cities) levels, a previously unexplored approach in the literature. The research examines the comparative efficiency of using a single model for an entire country versus tailored models for individual regions and cities, shedding light on the trade-offs in model evaluation. Various regression models, including Neural Networks (NNs), Linear Regression (LR), Regression Trees (RTs), Ensemble of Regression Trees (ERTs), Support Vector Machine (SVM), and Kernel Approximation, were evaluated using performance metrics such as Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and coefficient of determination (R2). NNs consistently performed best, achieving the lowest RMSE (1.5787 kWh/m2) and highest R2 (99.8600 %) at the regional level. Sensitivity analysis further explored the impact of different time resolutions, revealing that monthly data outperformed daily data in terms of accuracy and computational efficiency. Ultimately, we conclude that region-specific models and monthly data resolution are optimal for practical GTI prediction.
Keywords: Solar energy; Photovoltaic systems; Global horizontal irradiation; Global tilted irradiation; Machine learning; Multi-scale modeling (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422403545X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:313:y:2024:i:c:s036054422403545x
DOI: 10.1016/j.energy.2024.133767
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().